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The problem of the flexural vibrations of two semi-infinite elastic plates connected along a section of the boundary (the joint) 
that is short compared with the wavelength of the incident wave, is considered. The problem is reduced to solving integral equations 
on the section. The use of Green’s formula leads to an integral equation with a smooth kernel, the solution of which is a function 
with singularities of order -3/2 at the ends of the section. Regularization of this integral equation is carried out. The asymptotic 
form of the far field over the dimensionless length of the joint is found. 0 2002 Elsevier Science Ltd. All rights reserved. 

Approximate models for describing the vibrations of a thin elastic plate are normally derived for a thin 
infinitely long layer and then extended to plates of finite dimensions. Generally speaking, this leads to 
an incorrect description of edge effects. Thus, in the vicinity of the ends of fine cracks, inclusions and 
reinforcements, Kirchhoff’s model gives infinite values of the stresses and shearing forces [l, 21. 
Nevertheless, it is assumed that an incorrect description of the physical processes close to a crack or 
reinforcement has no significant effect on the far field of displacements. Moreover, the factor for a 
singularity of the stress in the neighbourhood of the end of a crack or fine reinforcement, which has 
been termed the stress intensity factor [l], enables one to judge possible fracture of the plate and crack 
growth. All the above enables the diffraction by the joint of two semi-infinite plates to be investigated 
in a first approximation using Kirchhoff’s model. The boundary-value problem considered in the present 
paper is “additional” to the problem of diffraction by a crack that is short compared with the wavelength, 
investigated in [3]. 

Practically all explicitly solvable problems of the diffraction and propagation of waves in plates (see, 
for example, [4, 51) have already been considered by now. The boundary-value problem investigated 
here can be formulated in the higher order as explicitly solvable. In fact, to solve the fourth-order 
differential equation describing the flexural vibrations of a plate within the framework of Kirchhoff’s 
theory, values of the function at a separate point were determined (according to embedding theorems 
[6]). Thus, in a first approximation the short joint can be regarded as a point joint, which enables the 
solution of the problem to be constructed in quadratures. 

The construction of corrections to such a solution requires an examination of an extended joint. By 
using the Green’s function method, the problem can be reduced to integral equations along a section, 
in which the unknown quantities are the shearing force and the bending moment on the joint. As is 
well known [2], in the neighbourhood of the crack edge, the shearing force has a non-integrable 
singularity, i.e. the solution of the integral equation can be classified as a non-integrable function. A 
technique for the analytical and numerical analysis of integral equations of this form has been developed 
in [l]. A slightly different approacht is used in the present paper. 

The use of the saddle-point method for the integral representation of the solution leads to formulae 
for the pattern of the flexural wave diverging from the joint, while the residues at the poles of the 
integrand give the edge waves [7] which propagate along the edges of the plates. When constructing 
the asymptotic form of the radiation pattern and the amplitudes of the edge waves, it is necessary to 
carry out cumbersome transformations. In view of this, independent monitoring of the final asymptotic 
formulae is necessary, for which the reciprocity principle and the optical theorem [8] will be used below. 
Values of the pattern calculated by means of the asymptotic formula are given. It is pointed out that 
the corrections are considerable for a joint length of the order of 10” wavelength. 
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1. FORMULATION OF 
THE DIFFRACTION PROBLEM 

We will consider a system of two semi-infinite plates l& = {-- <X < +m, ky > 0) with free edges 
cv= +O}, connected along the section A = { ]x ] c a,y = 0). Vibrations are excited by a plane flexural 
wave 

Y = exp (ik& cos 19s - y sin 19s)) 

in one of the plates. The total field in the system consists of the incident wave q, the wave E,’ reflected 
from the free edge of the plate and the diffraction field F. The total field is the solution of the following 
boundary-value problem 

where ka is the wave number of the flexural waves, operators of the shearing force IF and the bending 
moment M are introduced on the line y = const, o is Poisson’s ratio and [f] is the abrupt change in 
the functionf on the line y = 0. 

The scattered field satisfies the radiation principle, which can be defined specifically in the form of 
the prescribed asymptotic form of the far field. The scattered field 5” forms, at considerable distances 
from the joint A, a diverging wave with asymptotic form 

and four edge waves [7,8] having the asymptotic forms 

6:-,+ - (4 + sign(y)A~)exp(+kx) { -&~lYo- exp( 

_(I-o)x*-k; 
(I +5)x* +k,2 w+---/~lyl)), IYFY* 

(1.2) 

(1.3) 

Here the edge waves are represented in the form of the sum of symmetrical waves with amplitudes A: 
and antisymmetrical waves with amplitudes& The wave number x of the edge waves is defined by 
the formula [7,8] 

X = k()(( I - 0)(30 - I + 2JEGz&-1/4 

The Y(6) diagram and the amplitudes of the edge waves A, in the asymptotic forms are assumed to 
be finite. Note that the Y(e) diagram is a meromorphic function in the complex plane 6. 

Below, the quantity kg will be assumed to be small. 

2. THE GEOMETRIC PART OF THE FIELD 

We will consider the problem for unjoined plates. Then conditions (1.1) are satisfied along the entire 
axis and the plates vibrate independently. The filed 5’ consists of a reflected plane wave and a non- 
uniform wave 

5’ = R(fiO)exp(ikO(xcosbO +ysin60))+T(90)exp(ikoxcos~90 -y &&Fe) 

The reflection coefficient R(fQ and the transformation coefficient r(19s) are determined from boundary 
conditions (1.1). Solving the system of two equations, we obtain 
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RtW = T(l.30) = - 
2isin 6oA+(Qo)A_(~o) 

Ufio) 

L(bo) = isin f?,A~(6,)+ ,/xA!(fio), A,(60)=(1-o)cos2f+o~1 

We will define the geometric part of the field as follows: 

cg= 5’+5’9 
i 

Y>O 

0, Y<O 

and we will calculate the abrupt changes in eg along the section h. It is obvious that only the displacements 
and angles of inclination have discontinuities, while the moments and forces are continuous owing to 
conditions (1.1) being satisfied for 5’ + r, including on the section A. We have 

r5;1=- 
4ikodl + cos* 9, sin 9, 

Ufio) 
A_ (6,) exp(ibx cos 6,) 

3. CHANGE TO INTEGRAL EQUATIONS 

Abrupt changes in the geometric part of the field are compensated by the correction r - the scattered 
field. Consider Green’s formula [9] for the scattered field 5” and Green’s function G(x, y, x0, yo) for an 
infinite plate II+ with a free edge. Such a Green’s function can be constructed by the method of 
separation of variables and was investigated earlier [lo]. The asymptotic forms (1.2) and (1.3) lead to 
the disappearance of integrals over an arc of large radius, and for the field 5” in plate II, the following 
integral representation is obtained 

yt&.p Yo) = j (ax, 0 > x0, y,,Wtx, O)- G,tx, 0, x,,. y,,YWtx, O))dr, y. > 0 
-a 

The representation for the field in plate II_ is obtained in a similar way. We will write both formulae 
together 

5”(*0,~0)=sign(yo)~ G(x.0 9 x09 I YO I)P(x)~ + ; G,(x, 0, xov I YO I)dx)~ (3.1) 
--D --(I 

The functionsp(x) and q(x) denote (apart from a factor) the force and moment of the total field at the 
joint A. 

Representation (3.1) was obtained formally. Close to the ends of thin inhomogeneities the field has 
singularities and the shearing force may be non-integrable [l]. An investigation was made in [2] of the 
field of displacements in the neighbourhood of the end of a semi-infinite crack and it was shown that 
the shearing force has a singularity of the order of -3/2. Thus, function&) in integral representation 
(3.1) has singularities of the form (x + a)- 72, and the kernel of the integral equation for p(x) is a 
continuous function, Methods have been developed [l] for regularizing integral representations and 
integral equations of this kind, and also schemes for their numerical solution. 

We will consider in more detail the causes of the emergence of a non-integrable weight&) in integral 
representation (3.1). We will seek the part of the field that is uneven with respect toy by the Fourier 
transformation method. As a consequence of the radiation conditions, we have 

50(x0, yo) = sign(y,)j PO (a-(h)e-b-(l)IYOI + a+(h)emb+(k)iYOI)2& 

I(h)=aZ(h)b-(h)-a~(h)b+(h), a&)=(1-a)h*fk& b* =,/m 

The factor l/l(h) is introduced for convenience. 
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Boundary conditions (1.1) impose certain constraints on the functions &(A>. In view of the unevenness 
of the field 5’ and its continuity on A, the condition that the moment MC equals zero is satisfied on 
the entire axis and can easily be inverted. As a result, the functions a’(A) can be expressed in terms 
of a single unknown function a(h) 

a%) = a+(W(h), a+(A) = -u_(h)a(l) 

From the boundary condition for the force we obtain the equation 

j e’~a(h)dh=O, Ixl>a 

The continuity of the field 5 on A gives the paired equation 

(3.3) 

(3.4) 

Paired equations (3.3) and (3.4) uniquely define the function a(h) in the class of functions with no more 
than linear growth at infinity, i.e. a(h) = O(h). 

If Eq. (3.3) is formally inverted, the following representation is obtained for the function a(A) 

The function&) is the same as in integral representation (3.1). Since the function a(A) increases at 
infinity, its Fourier transform&) contains non-integrable singularities. Changing the order of integration 
in representation (3.2) and calculating the integral over h, we formally obtain representation (3.1). 

To eliminate non-integrable singularities of&), we will represent the function a(h) in the form 

o(h) = h*c%V + crop,(h) + a,p, (h) (3.5) 

The function &(J.) decreases at infinity no more slowly than O(h-‘), but the remaining two terms 
compensate for the double zero at h = 0 of the first term. As the functions p&) and pi(h) one can 
choose any functions that do not contradict the asymptotic form of a(A) at infinity, and are such that 
the vectors (PO(Q PEON and (pi(O), P;(O)) are linearly independent. Furthermore, the carriers of the 
Fourier transformation of the functions p,@) and pl(A) must belong to the interval 1x1 < a. 

In taking into account representation (3.5) and the above properties of the functions pa(i) and p,(h), 
Eq. (3.3) is inverted and yields 

(3.6) 

Now, owing to the asymptotic form B(h) = O(k-‘), the function@(x) at the ends of the integration interval 
vanishes, i.e. the following representation of this function holds 

where P(x) is a bounded function. 

b(x) = 42 -x2 P(x) (3.7) 

Substituting expression (3.6) into Eq. (3.4), and changing the order of integration, we obtain an 
integral-algebraic equation for determining the functionj(x) and the constants a0 and a1 

j jwq& 0 
aopo(~)+alpl@) , x0, O)u!x - k;J eiXXo 

-a 0) 
hZdh = $[yl(x,) (3.8) 

where 
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For the even part of the scattered field c it is possible to retain representation (3.1), since the unknown 
quantity q(x) is integrable. Taking into account the expression for Green’s function, we conclude that 
this representation takes the form 

f$(xo, yo) = j (a_(h)b+(h)e-b-(I)‘YO’ -a+(h)h(h)e-6+(~)‘YO’) i e”rx-xo)q(x)dx~ (3.9) 
--(I 

Substituting expression (3.9) into the boundary condition [$I = 0, we obtain an integral equation in 

q(r) 

j q(x)G,,, (xv a x0, ow = ~K;lcxo) 
-a 

(3.10) 

Gyyo (x, 0, x0, 0) = k; j eik(x-xo) J h4-k,4 ~ 
NW 

4. INVESTIGATION OF THE KERNELS OF 
THE INTEGRAL EQUATIONS 

The solvability of the equations is determined by the singularities of the kernels. To determine the 
asymptotic form of the function G(x, 0, x0,0), G,(x, 0, x0,0) and ~uo(x, 0, XO, 0) as 1.x -x01 + 0, we 
will investigate the behaviour of the integrands for large h. We can verify the correctness of the asymptotic 
form 

I(k)=k,2XIh13+..., x=(1-0)(3+0) 

Hence Green’s function G(x, 0, x0, 0) is finite when x = x0, and its second derivatives G,(x, 0, x0, 0) 
and G,,(x, 0, x0, 0) have logarithmic singularities. 

To prove the theorems of the existence and uniqueness of the solutions of integral equations with a 
logarithmic kernel, it is necessary to calculate the index of the integral operator [ll]. Investigating the 
Fourier transforms of the kernels G, and Gyy~, we establish their sectoriality: if irrationalities in the 
denominator are eliminated, it is possible to note that the imaginary part of the Fourier transforms 
does not change sign, and consequently the kernels possess the property of sectoriality and the index 
is equal to zero. 

Using the theorems of the existence and uniqueness of solutions [12], we conclude the integral 
equation (3.10) has a unique solution, which can be represented in the form 

(4.1) 

Integral equation (3.8) with any prescribed a~ and ai can be solved uniquely in class (4.1). However, 
the solution &x) may vanish at the ends of the integration interval, which is achieved by the choice of 
the constants a0 and al. 

We will continue the investigation of the kernels of the integral equations. To obtain the asymptotic 
form of the radiation pattern of the scattered field in the two higher orders with respect to the 
asymptotically small parameter k,-g, it is necessary to know the asymptotic form of the kernels up to 
terms that are quadratic in x -xg 

Owing to the evenness of the function G(x, 0, x0, 0) with respect to x -x0, we have 

G(x, 0, x0, 0) = k;*l+ 6(x-x0) 

6% -x0) = GJx, 0, x0, 0) = -j e ik&-x0&2 

%Q 
d7, d(0) = 6’(O) = 0 (4.2) 

Here 
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dx 
I= 1 --~(x), ~(z)=ko51(koX)= A2+(z) %2~-l-sd 2 - (x)~/~ + 1 

sa± (X) = k0-2a± (ko't) = (l - 0)'1:2 2:1 

To calculate the asymptotic form of the integral in expression (4.2) when s ---> 0, we will use the integral 
representation of the MacDonald function 

e iXS d,c e ~ dz 
2K°(s)= J' 2 ' 2K°(is) = ~ 

and introduce the notation 

Hr'('C)Xk d%, k = 0, 2; Jk. = J fe(~) 

,,, 2 ( x 2 

m=0,1 

1 - m o 0 + ~ / 2 )  
1 - ~/~4'--'=_1 ' 

m=0,1 

We find 

G~(x, 0' x°' 0)=-l(K°(k°x I x - x °  I)+ K°(ik° I x - x °  I)) + ~ eik°*-~°JHo(X) ~£(x)d'c (4.3) 

The values of the integral in formula (4.3) and its derivatives up to the third order when x = x o can 
be calculated by direct substitution. Taking into account the asymptotic form of the MacDonald function 
and integrating, we obtain the asymptotic form (y is Euler's constant) 

G(x,O, xo, O)=TT+--~x -x  o) I n l x - x  o - (X-Xo) 2 -  
ko Z X k. 2 4 2 

k°2(Jzo + 
n~ i- )(x-xo)4 + o ( ( x - x 0 )  6 In I -x0 I) 

24Z[, 

In a similar way we can obtain the asymptotic form of the kernel of integral equation (3.10) 

,x 

+ J21 +i (X-Xo) 2 +O((x-xo)  41n I x - x o  I) (4.4) 

5. THE ASYMPTOTIC FORM OF THE SOLUTIONS OF 
THE INTEGRAL EQUATIONS 

An analysis of the singularities of the kernels of integral-algebraic equation (3.8) and integral equation 
(3.10) enables us to conclude that the solutions/~(x), a0, (xl and q(x) exist and are unique in the 
corresponding classes. 

To calculate the asymptotic form of the solution of Eq. (3.8) it is convenient to select the functions 
p0(~.) and p~(~.) in the form 

P0(L) = i e-iXSds pl(~.) = 7 e-'XSsds (5.1) 
_ °  ' _°" 

We will represent the function/3(x) in the form (3.7) andexpand the function P(x) in a Taylor series. 
To obtain the far-field asymptotic form up to terms O((koa)~), it is sufficient to retain only the two leading 
terms 
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&r> = (P(0) + P’(O)x)J77- (5.2) 

We substitute expressions (5.1) and (5.2) into Eq. (3.8) and replace the kernels with the asymptotic 
forms. After replacing the variables x = as and x0 = as0 and evaluating the integrals, we obtain an 
algebraic equation in P(O), P’(O), o. and al. The left-hand side of this equation is a third-degree 
polynomial with coefficients of even powers which depend onP(0) and ~6, and with coefficients of uneven 
powers which depend on P(0) and ol. The right-hand side can likewise be expanded in a power series 
so. After equating the coefficients of powers of so, we obtain a system of linear equations. This system 
splits into two systems of two equations each: the first system enables us to determine the quantities 
P(0) and ao, while the unknown quantities P’(0) and al are determined from the second system. We 
find 

aOa2 = [y](o)@ - l)cos2 6, - 

_ x (koa)4 - = [cg](o)(B2 - 2B+ 2) 
16~1~ 

-&-(koa)3[~q]cos3 6, 

P’(0)a3 = -&-koa[~g]cosl)O 

Here 

We now consider integral equation (3.10). We represent the solution in the form (4.1) and expand 
the function Q(as) in a Taylor series. We will confine ourselves to three terms 

Q(as) = & + Q,as + Q2a2s2 + . . . (5.3) 

We substitute expressions (5.3) and (4.4) into Eq. (3.10) and, evaluating the integrals, we obtain, as 
earlier, a system of equations in the coefficients Q&j = 0, 1, 2). The equation for Q, is removed. 

We obtain the asymptotic forms of the coefficients 

Q,a = ikOa$[~~](0)costYo 

Q2a2 = (koa)2 $;](O)( 2 -ices’ 19~) 

Here 

A=ln y +y-2J,,+i5, C=J2,+if 
( 1 

6. THE FAR FIELD 

Evaluating the integrals over h in (3.2) and (3.9) by the saddle point method [13], we obtain expressions 
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for the Yr(19) pattern of the diverging wave (1.2). We have 

Y(l9)= . I(; r:st) {a+(k, cos*)a(k, cos*)sign(y)+ 

0 

+ /$a_ (k, cos 6) 7” 1 + cos 6 j q(x)e-ikoxcos “dx 
-a 

(6.1) 

On deforming the integration contour, residues at the zeros of the denominator l(h) are singled out, 
which gives the edge waves 

Ai = 2ni 
a+ (x)a(+x) , Ai=2ni 

a_(x)p + k; D 

l’(fx) 
j efixr 

Q-+x) -_D 
q(x)& (6.2) 

Formulae (6.1) and (6.2) give accurate expressions for the pattern and the amplitudes of the edge waves 
if the functions a(h) and q(x) occurring in them are calculated accurately. 

Note that expressions (6.1) and (6.2) are connected by the relations 

A* = -2Ai 
6=arc%dt0~y(~) (6.3) 

which is similar to that obtained earlier [14] for the problem of the diffraction of an acoustic wave by 
a thin plate. 

Using the asymptotic forms of the solutions of integral equations (3.8) and (3.10) found in the previous 
section, we obtain the leading terms of the expansion of ‘I’(+) with respect to the small parameter koa 

Y(6,6,)=i 
sin 6 sin 6, 
-g-g~{sign(y)A+(f+)A+(~o) 

0 
f -$cosficos% + 

+ x A_(t+)A_(f+,)~J~ 

+ &a)* ( ~cos6cos~o + -$cos* t3+cos290) ) I} +... (6.4) 

From formulae (6.2) it is possible to write the asymptotic forms of the edge waves. However, these 
asymptotic forms can also be obtained from (6.4) using relation (6.3). 

7. EVALUATION OF THE INTEGRALS 

The asymptotic form of the far-field pattern (6.4) contains the integrals I, Jao and Joi, and the 
denominators of their integrands contain the factor I. These integrals can be reduced to the sums 
of residues at the oles, determined by the roots of the function 5!(o) that lie on the Riemann surface 
of the root J----l? r4 - 1. We hx the branches of the square roots, making sections in the complex plane z 
along the rays 

Li =[i,l+im), L, =[i,-= +i), 4 =[-1,-1-i-), L4 =[-&w-i) 

We will examine the roots of the denominator L-&?(z). They are positioned in pairs on a four-sheet 
Riemann surface. Four roots lie on a physical sheet: 

7=r()=xlLcJ, r=-Zo, 2=‘5,, ?=-t, 

where 
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(I-o)(l-3a+2~~) 
> 

-% 
e’r’4 

On the remaining sheets of the Riemann surface, the roots lie at the points z = +ira and r = kiwi. 
We will first consider the integral I, which occurs in the leading term of the asymptotic form. We 

deform the integration contour in the upper half-plane and stretch it on sections Li and L2. In this 
case, the residues are isolated at the poles r. and rl. In the integrals over loops Cl and C, covering the 
rays L1 and L2, we change to integration over the right-hand edges. In the integral over L2 we make 
the replacement of variable z = it, which transforms ray L2 to L1, and we combine the integrals. It can 
be established that the integrals cancel out over the sections. Thus, 

Note that integral I is a purely imaginary quantity. 
We now perform similar transformations with the remaining integrals. In this case, the contributions 

of the integrals over the sections for Jzo cancel out as for 1, while for Jo0 and Joi they are doubled. For 
Jzs we have 

In the integrals Jo0 and Joi the integrals over the ray L1 are reduced to the sums of the residues using 
a procedure developed earlier [5]. For this we introduce the function 

f(r) = In(z - Jr2 - I ) 

It it possible to verify thatf(-r) = ix-f(n), which enables the following transformations of the integrals 
to be carried out 

I+;- 

I m2w = k j W2)(f(r) - fW)dr = $& ;, F(r2)f(r)dr 
I Cl I 3 

Now the integrals from combining the loops Ci and C2 can be evaluated as the sums of residues. Finally 
we have 

Jo, = 2ni 

1 7 ((1-0~-“)2~-1+mo(l+o/2,,sa_2(~j)-(1-~~-~)Zf(~~-l)94~(ri) 
+-C 

4 j=o (I-o)((l-(r)2(3+O)r4-1+30)7:J~ 
ftzj) 

8. THE OPTICAL THEOREM 
AND NUMERICAL RESULTS 

The asymptotic formulae obtained satisfy the reciprocity principle, i.e. the expression for the pattern 
does not change when 6 is replaced by 13~ and tie is replaced with 8. Furthermore, the formulae obtained 
can be monitored using the optical theorem. Earlier [8], a different normalization of the edge waves 
was adopted, and an error was allowed in calculating the energy flux transferred by the edge wave. 

We will formulate the optical theorem as it applies to the geometry of the system examined here. 
The effective scattering cross-section, calculated as the proportion of energy taken from the geometric 
part of the field, is expressed by the formula 

(8.1) 
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On the other hand, the effective scattering cross-section can be calculated as the energy scattered 
at the joint and carried away by the cylindrical wave diverging over the plate and by the four edge waves, 
i.e. 

where 

-*+2(1-c#(a+(x)b_(x)-a_(x)b+(x))) 
2b+tx) 

Figure 1 shows the patterns of the cylindrical waves, calculated by means of formula (6.4) for an angle 
of incidence of 30”. It is assumed that o = 0.3. The accuracy of the calculations was monitored by means 
of the optical theorem (8.1), (8.2). For the patterns presented, the energy balance breaks down by no 
more than lOA, which is due to calculation errors. These errors are greatest when cr = 0, since in this 
case x is practically identical with ks. 

For a point model of the joint (i.e. when a = 0), the scattered field is symmetrical with respect to x 
and antisymmetrical with respect toy. When kg = lo”, the correction to the point model of the joint 
is considerable. Here the pattern loses symmetry both with respect to x and with respect toy. 

The numerical analysis carried out has shown that, if only the leading term and corrections having 
a logarithmic order of smallness with respect to koa are retained in formula (6.4), the optical theorem 
is satisfied exactly. If, however, terms 0(&a)') are also taken into account, the optical theorem is 
satisfied approximately. 
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